Loading libraries:

library(readr)
library(plyr)
library(tidyr)
library(lubridate)
library(tidyverse)
library(dplyr)
library(ggplot2)

#Cleaning NMSS Data

Konrad & Ramya: Cleaning donations data for 2013-2017:

Reading in the data:

donations2013 <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Donations\\2013 Bike Donations Date Fixed.csv")
donations2014 <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Donations\\2014 Bike Donations Date Fixed.csv")
donations2015 <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Donations\\2015 Bike Donations Date Fixed.csv")
donations2016 <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Donations\\2016 Bike Donations Date Fixed.csv")
donations2017 <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Donations\\2017 Bike Donations Date Fixed.csv")

Comparing column names to make sure the data is in the right order and all fields are the same:

cols2013 <- colnames(donations2013)
cols2014 <- colnames(donations2014)
cols2015 <- colnames(donations2015)
cols2016 <- colnames(donations2016)
cols2017 <- colnames(donations2017)


identical(cols2013, cols2014)
identical(cols2013, cols2015)
identical(cols2013, cols2016)
identical(cols2013, cols2017)


remove(cols2013, cols2014, cols2015, cols2016, cols2017)

Changing some columns to factors:

cols <- c(1, 2, 3, 4, 6, 7, 10:19, 21:32, 35, 36, 38, 39, 44:49)
donations2013[,cols] <- lapply(donations2013[,cols], factor)
donations2014[,cols] <- lapply(donations2014[,cols], factor)
donations2015[,cols] <- lapply(donations2015[,cols], factor)
donations2016[,cols] <- lapply(donations2016[,cols], factor)
donations2017[,cols] <- lapply(donations2017[,cols], factor)

Refactoring certain columns:

Donor Gender:

#summary(donations2013$`Donor Gender`)
levels(donations2013$`Donor Gender`) <- list(Female=c("Female", "F", "Feiale"), Male=c("Male", "M", "Iale"))
#summary(donations2013$`Donor Gender`)


#summary(donations2014$`Donor Gender`)
levels(donations2014$`Donor Gender`) <- list(Female=c("Female", "F", "Feiale"), Male=c("Male"))
#summary(donations2014$`Donor Gender`)


#summary(donations2015$`Donor Gender`)
levels(donations2015$`Donor Gender`) <- list(Female=c("Female", "F", "Femala"), Male=c("Male"))
#summary(donations2015$`Donor Gender`)


#summary(donations2016$`Donor Gender`)
levels(donations2016$`Donor Gender`) <- list(Female=c("Female", "F", "Femala"), Male=c("Male"))
#summary(donations2016$`Donor Gender`)


#summary(donations2017$`Donor Gender`)
levels(donations2017$`Donor Gender`) <- list(Female=c("Female", "F", "Femala", "Famale"), Male=c("Male", "M"))
#summary(donations2017$`Donor Gender`)

Prior participants:

#summary(donations2013$`Is Prior Participant`)
levels(donations2013$`Is Prior Participant`) <- list(Yes = c("Yes"))
#summary(donations2013$`Is Prior Participant`)


#summary(donations2014$`Is Prior Participant`)
levels(donations2014$`Is Prior Participant`) <- list(Yes = "Yes")
#summary(donations2014$`Is Prior Participant`)


#summary(donations2015$`Is Prior Participant`)
levels(donations2015$`Is Prior Participant`) <- list(Yes = "Yes")
#summary(donations2015$`Is Prior Participant`)


#summary(donations2016$`Is Prior Participant`)
levels(donations2016$`Is Prior Participant`) <- list(Yes = "Yes")
#summary(donations2016$`Is Prior Participant`)


#summary(donations2017$`Is Prior Participant`)
levels(donations2017$`Is Prior Participant`) <- list(Yes = "Yes")
#summary(donations2017$`Is Prior Participant`)

Is Team Captain

#summary(donations2013$`Is Team Captain`)
levels(donations2013$`Is Team Captain`) <- list(Yes ="TRUE", No = "FALSE")
#summary(donations2013$`Is Team Captain`)


#summary(donations2014$`Is Team Captain`)
levels(donations2014$`Is Team Captain`) <- list(Yes = c("TRUE", "PRUE"), No = "FALSE")
#summary(donations2014$`Is Team Captain`)


#summary(donations2015$`Is Team Captain`)
levels(donations2015$`Is Team Captain`) <- list(Yes = "TRUE", No = c("FALSE", "BALSE"))
#summary(donations2015$`Is Team Captain`)

#summary(donations2016$`Is Team Captain`)
levels(donations2016$`Is Team Captain`) <- list(Yes = c("TRUE", "PRUE"), No = "FALSE")
#summary(donations2016$`Is Team Captain`)

#summary(donations2017$`Is Team Captain`)
levels(donations2017$`Is Team Captain`) <- list(Yes = c("TRUE"), No = c("FALSE", "BALSE", "FALSA"))
#summary(donations2017$`Is Team Captain`)

Gift Payment Method

#summary(donations2013$`Gift Payment Method`)
levels(donations2013$`Gift Payment Method`) <- list(Cash = "Cash", Check= "Check", `Credit Card` = "Credit Card")
#summary(donations2013$`Gift Payment Method`)


#summary(donations2014$`Gift Payment Method`)
levels(donations2014$`Gift Payment Method`) <- list(Cash = "Cash", Check= "Check", `Credit Card` = "Credit Card")
#summary(donations2014$`Gift Payment Method`)


#summary(donations2015$`Gift Payment Method`)
# No NAs or anything to refactor

#summary(donations2016$`Gift Payment Method`)
levels(donations2016$`Gift Payment Method`) <- list(Cash = "Cash", Check= "Check", `Credit Card` = c("Credit Card", "Credit Car"))
#summary(donations2016$`Gift Payment Method`)


#summary(donations2017$`Gift Payment Method`)
levels(donations2017$`Gift Payment Method`) <- list(Cash = "Cash", Check= "Check", `Credit Card` = c("Credit Card", "Credit Car"))
#summary(donations2017$`Gift Payment Method`)

Gift Type

#summary(donations2013$`Gift Type`)
levels(donations2013$`Gift Type`) <- list(Offline=c("offline", "ofbline"), Online="online")
#summary(donations2013$`Gift Type`)


#summary(donations2014$`Gift Type`)
levels(donations2014$`Gift Type`) <- list(Offline="offline", Online=c("online", "ojline"))
#summary(donations2014$`Gift Type`)


#summary(donations2015$`Gift Type`)
levels(donations2015$`Gift Type`) <- list(Offline="offline", Online="online")
#summary(donations2015$`Gift Type`)


#summary(donations2016$`Gift Type`)
levels(donations2016$`Gift Type`) <- list(Offline="offline", Online=c("online", "onhine", "onlina"))
#summary(donations2016$`Gift Type`)
             

#summary(donations2017$`Gift Type`)
levels(donations2017$`Gift Type`) <- list(Offline="offline", Online=c("online", "ojline", "onlina"))
#summary(donations2017$`Gift Type`)

Offline status

summary(donations2013$`Offline Status`)
summary(donations2014$`Offline Status`)
summary(donations2015$`Offline Status`)
summary(donations2016$`Offline Status`)
levels(donations2016$`Offline Status`)<- list(confirmed = c("confirmed", "confirme`"), `Teamraiser Participant Gift` = c("(Teamraiser Participant Gift", "Teamraiser Participant Gift"))
summary(donations2017$`Offline Status`)

Dealing with dates

  • Date format was changed in Excel * to eg 08/12/13 to enable easy conversion of dates.
#Since each dataset is the same, can identify all date fields from just 2013 data
date_cols <- which(names(donations2013)%in%c("Event Date", "Date Recorded", "Donor Opt-out Date", "Registration Date", "Team Creation Date"))

donations2013[, date_cols] <- lapply(donations2013[, date_cols], as.Date, "%m/%d/%y")
donations2014[, date_cols] <- lapply(donations2014[, date_cols], as.Date, "%m/%d/%y")
donations2015[, date_cols] <- lapply(donations2015[, date_cols], as.Date, "%m/%d/%y")
donations2016[, date_cols] <- lapply(donations2016[, date_cols], as.Date, "%m/%d/%y")
donations2017[, date_cols] <- lapply(donations2017[, date_cols], as.Date, "%m/%d/%y")

Writing out Formatted Donations Data to an RDS file

saveRDS(donations2013, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2013.rds")
saveRDS(donations2014, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2014.rds")
saveRDS(donations2015, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2015.rds")
saveRDS(donations2016, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2016.rds")
saveRDS(donations2017, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2017.rds")

Konrad: Cleaning Bike Teams Data

teams <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Bike Teams\\2013-2017 Bike Teams Date Format Fixed.csv")
#summary(teams)
factor_cols <- c(1:5, 7, 8, 10, 11, 20:22, 26)
teams[ ,factor_cols] <- lapply(teams[ ,factor_cols], factor)

# Removed time from team creation date and Event Date (in Excel)!!! 

teams$`Team Creation Date` <- as.Date(teams$`Team Creation Date`, format = '%m/%d/%y')
teams$`Event Date` <- as.Date(teams$`Event Date`, format = '%m/%d/%y')

summary(teams$`Team Division`)

levels(teams$`Team Division`) <- list(Association = "Association", Brewery="Beer/Brewery", `Bike Club`="Bike Club", `Bike Shop` = c("Bike Shop", "Bike Shops"), `Civic Team` = "Civic Team", `Club/Organization` = "Club/Organization", Corporate = c("Corporate", "Corporation"), `Family/Friends` = c("Family and Friends", "Family/Friends", "Frien`s and Family", "Friend and Family", "Friends and Family"), Ohana = "Ohana", `Ohana/Friends` = "Ohana and Friends", Open = "Open", `Open Team` = "Open Team", Organization = c("Organization", "Organization (Clubs, Civic Groups, etc.)", "Organization (Clubs; Civic Groups; etc.)", "Organization (Clubs; Civic Groups; Place of Worship; etc.)"), Other = "Other", `Place of Worship` = c("Place of Worship", "Place of worship", "Religious"), School = "School", `Small Business` = "Small Business", `Volunteer Group` = "Volunteer Group")
#summary(teams$`Event Type`)
#summary(teams$`Internal Event Name`)
#summary(teams$`Event ID`)
#summary(teams$`Team Creation Date`)

#summary(teams$`Captain Email Domain`)
#summary(teams$Company)
#summary(teams$`Team Name`)
#summary(teams$`Number of Participants`)
saveRDS(teams, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Bike Teams/teams.rds")

Ramya: Cleaning Bike Events

BikeEvents<-read.csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Events\\2013-2017 Bike Events.csv")
str(BikeEvents)
levels(BikeEvents$City)
#Cleaning cities
BikeEvents$City[BikeEvents$City == 'Athens, AL ']<- "Athens"

BikeEvents$City[BikeEvents$City == 'Cherry Hill, NJ with alternate start locations']<-"Cherry Hill"
#as.factor(BikeEvents$City[BikeEvents$City == 'Ridgeland, MS']<- "Ridgeland")

BikeEvents$City[BikeEvents$City == 'St. Augustine ']<-"St. Augustine"

BikeEvents$City[BikeEvents$City == 'Sioux Falls area']<-"Sioux Falls"

BikeEvents$City[BikeEvents$City == 'Schodack ']<-"Schodack"

BikeEvents$City[BikeEvents$City == 'San Antonio ']<-"San Antonio"

BikeEvents$City[BikeEvents$City == 'New York City']<-"New York" 

BikeEvents$City[BikeEvents$City == 'New Albany ']<-"New Albany"

BikeEvents$City[BikeEvents$City == 'Keuka Park ']<-"Keuka Park"
BikeEvents$City[BikeEvents$City == 'Hollidaysburg, PA to State College']<-"Hollidaysburg" 
BikeEvents$City[BikeEvents$City == 'Duluth to White Bear Lake']<-"Duluth"
BikeEvents$City[BikeEvents$City == 'Duluth to the Twin Cities']<-"Duluth"
BikeEvents$City[BikeEvents$City == 'Fargo area']<-"Fargo"
BikeEvents$City[BikeEvents$City == 'Dallas ']<-"Dallas"
BikeEvents$City[BikeEvents$City == 'DeKalb']<-"Dekalb"
BikeEvents$City[BikeEvents$City == 'DeKalb ']<-"Dekalb"
summary(BikeEvents$Event.Date)
#Date Conversion in R
datecols_bikeevents<-which(names(BikeEvents)%in%c("Event.Created.Date", "Event.Date"))

for (i in datecols_bikeevents) {
  BikeEvents[,i] = as.Date(BikeEvents[,i], '%m/%d/%y')
}

Saving the work

saveRDS(BikeEvents, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Bike Events/Bike Events.rds")

Jordan: Cleaning Bike Participants

Import data

participants <- read_csv("C:\\Users\\Konrad\\Desktop\\ETM 527\\Participants\\2013-2017 Bike MS Participants.csv")

Basic data exploration

class(participants)
dim(participants)
glimpse(participants)
head(participants, n = 5)
tail(participants, n = 5)
summary(participants)

Able to see that some fields need to be converted from integers to characters. Also, easily able to identify which fields will need to be rid of NA values.

# need to change fields from int to char 
participants$`Team ID` <- as.character(participants$`Team ID`)
class(participants$`Team ID`)
participants$`Contact ID` <- as.character(participants$`Contact ID`)
participants$`Address -  Participant ZIP/Postal Code` <- as.character(participants$`Address -  Participant ZIP/Postal Code`)
participants$`Event ID` <- as.character(participants$`Event ID`)
summary(participants)

#change event date from character to date-time
participants$`Event Date` <- mdy_hm(participants$`Event Date`)
class(participants$`Event Date`)
head(participants$`Event Date`, n = 5)
# acknowledge NA's 
map(participants, ~sum(is.na(.)))

Writing out Jordan’s work

saveRDS(participants, "C:/Users/Konrad/Desktop/ETM 527/RDS Data/Participants/Participants.rds")
library(readr)
library(dplyr)
library(ggplot2)

donations2013 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2013.rds")
donations2014 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2014.rds")
donations2015 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2015.rds")
donations2016 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2016.rds")
donations2017 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2017.rds")

participants <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Participants/Participants.rds")

str(participants)

Creating Data Aggregations

From donations data

gen_2013 <- summary(donations2013$`Donor Gender`)
gen_2014 <- summary(donations2014$`Donor Gender`)
gen_2015 <- summary(donations2015$`Donor Gender`)
gen_2016 <- summary(donations2016$`Donor Gender`)
gen_2017 <- summary(donations2017$`Donor Gender`)


gender_year <- tibble(c(2013, 2014, 2015, 2016, 2017), 
                          c(gen_2013[1], gen_2014[1], gen_2015[1], gen_2016[1], gen_2017[1]), 
                          c(gen_2013[2], gen_2014[2], gen_2015[2], gen_2016[2], gen_2017[2]), 
                          c(gen_2013[3], gen_2014[3], gen_2015[3], gen_2016[3], gen_2017[3]))
                          
colnames(gender_year) <- c("Year", "Female", "Male", "NA")


year_num <- tibble(2013:2017, c(nrow(donations2013), nrow(donations2014), nrow(donations2015), nrow(donations2016), nrow(donations2017)))
colnames(year_num) <- c("Year", "Number of Participants")


tot_gifts2013 <- sum(donations2013$`Gift Amount($)`, na.rm = TRUE)
tot_gifts2014 <- sum(donations2014$`Gift Amount($)`, na.rm = TRUE)
tot_gifts2015 <- sum(donations2015$`Gift Amount($)`, na.rm = TRUE)
tot_gifts2016 <- sum(donations2016$`Gift Amount($)`, na.rm = TRUE)
tot_gifts2017 <- sum(donations2017$`Gift Amount($)`, na.rm = TRUE)

med_gifts2013 <- median(donations2013$`Gift Amount($)`, na.rm = TRUE)
med_gifts2014 <- median(donations2014$`Gift Amount($)`, na.rm = TRUE)
med_gifts2015 <- median(donations2015$`Gift Amount($)`, na.rm = TRUE)
med_gifts2016 <- median(donations2016$`Gift Amount($)`, na.rm = TRUE)
med_gifts2017 <- median(donations2017$`Gift Amount($)`, na.rm = TRUE)

tot_donations <- tibble(2013:2017,
                            c(tot_gifts2013, tot_gifts2014, tot_gifts2015, tot_gifts2016, tot_gifts2017),
                            c(med_gifts2013, med_gifts2014, med_gifts2015, med_gifts2016, med_gifts2017))

colnames(tot_donations) <- c("Year", "Total Donations", "Median")

add_tot_gifts2013 <- sum(donations2013$`Additional Gift Amount($)`, na.rm = TRUE)
add_tot_gifts2014 <- sum(donations2014$`Additional Gift Amount($)`, na.rm = TRUE)
add_tot_gifts2015 <- sum(donations2015$`Additional Gift Amount($)`, na.rm = TRUE)
add_tot_gifts2016 <- sum(donations2016$`Additional Gift Amount($)`, na.rm = TRUE)
add_tot_gifts2017 <- sum(donations2017$`Additional Gift Amount($)`, na.rm = TRUE)

add_med_gifts2013 <- median(donations2013$`Additional Gift Amount($)`, na.rm = TRUE)
add_med_gifts2014 <- median(donations2014$`Additional Gift Amount($)`, na.rm = TRUE)
add_med_gifts2015 <- median(donations2015$`Additional Gift Amount($)`, na.rm = TRUE)
add_med_gifts2016 <- median(donations2016$`Additional Gift Amount($)`, na.rm = TRUE)
add_med_gifts2017 <- median(donations2017$`Additional Gift Amount($)`, na.rm = TRUE)

add_donations <- tibble(2013:2017,
  c(add_tot_gifts2013, add_tot_gifts2014, add_tot_gifts2015, add_tot_gifts2016, add_tot_gifts2017), 
  c(add_med_gifts2013, add_med_gifts2014, add_med_gifts2015, add_med_gifts2016, add_med_gifts2017))

colnames(add_donations) <- c("Year", "Additional Donations", "Median")

Plotting donations data

ggplot(data = subset(donations2013, !is.na(`Donor Gender`))) + 
  geom_bar(aes(`Donor Gender`, fill = `Donor Gender`), na.rm = TRUE) + 
  xlab("Donor Gender") + 
  ylab("Count") + 
  ggtitle("2013 NMS Participants by gender")

ggplot(data = subset(donations2013, !is.na(`Gift Payment Method`))) + 
  geom_bar(aes(`Gift Payment Method`, fill = `Donor Gender`)) + 
  xlab("Gift Payment Method") + 
  ylab("Dollars") + 
  ggtitle("2013 NMS Gift Payment Method Types by Gender")

library(scales)
ggplot(tot_donations, aes(Year, `Total Donations`/1000000)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  ylab("Gift Amount ($M)") + 
  ggtitle("Gift amounts have fallen every year since 2014") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Gift amounts have fallen.png")


ggplot(add_donations, aes(Year, `Additional Donations`/1000000)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  ylab("Additional gift Amount ($M)") + 
  ggtitle("Additional gift amounts were increasing but fell in 2017") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Additional gift amounts were increasing.png")




colnames(add_donations)


ggplot() + 
  geom_bar(data = tot_donations, aes(Year, `Total Donations` / 1000000), stat = "identity") +
  geom_bar(data = add_donations, aes(Year, `Additional Donations` /1000000), stat = "identity", fill = "red", alpha = 0.6)  
  

participants <- tibble(2013:2017, c(nrow(donations2013), nrow(donations2014), nrow(donations2015), nrow(donations2016), nrow(donations2017)))

colnames(participants) <- c("Year", "Participants")

ggplot(participants) + 
  geom_bar(aes(x = Year, y = Participants), stat = "identity") + 
  ylim(0, 1000000) + 
  scale_y_continuous(labels= comma) +
  ggtitle("Number of participants has fallen every year since 2013") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Number of participants has fallen.png")

  
don_per_part = tibble(2013:2017, tot_donations$`Total Donations` / participants$Participants)
colnames(don_per_part) <- c("Year", "Average Donation")

ggplot(don_per_part, aes(Year, `Average Donation`)) + 
  geom_bar(stat = "identity") + 
  ylab("Averate Gift Amount") + 
  ggtitle("Average gift per participant has increased every year since 2013") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
  ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Average gift per participant has increased.png")


Ramya’s Bike Events Data Aggregation

#Average amount by total participants in all the states
Amount_by_States<-aggregate(BikeEvents$Total.From.Participant..., by=list(State = BikeEvents$State), FUN = mean)
head(Amount_by_States)
#Amount raised by participants from 2013-2017
Amount_by_year <-aggregate(BikeEvents$Total.From.Participant..., by = list(year = BikeEvents$Fiscal.Year), sum)
Amount_by_year
#selft donars over
Donors_by_year <-aggregate(BikeEvents$Total.From.Participant..., by = list(year = BikeEvents$Fiscal.Year), sum)
Donors_by_year
#Active registrations overs the years
Active_registrations <-aggregate(BikeEvents$Active.Registrations, by = list(year = BikeEvents$Fiscal.Year), sum)
Active_registrations

Ramya’s Plots

library('ggplot2')
Amounts_ggplot<-ggplot(Amount_by_States, aes(x=Amount_by_States$State,y=Amount_by_States$x))+ 
  theme(axis.text.x = element_text(face = "bold", size = 8, angle = 90))+
  geom_bar(stat = 'identity', fill = "blue")+
  ggtitle("Average amount raised by Bike Events participants across all the states") + 
  labs(x ='States', y = 'Average amount')
Amounts_ggplot
ggsave(filename="D:/527- Data Mining/TUN Data Challenge/Data Visualizations/Amounts_ggplot.pdf", plot=Amounts_ggplot)
ggplot(Amount_by_year, aes(x = Amount_by_year$year, y = Amount_by_year$x)) +
  geom_bar(stat = 'identity', fill = "blue")+ggtitle("Participants amount to Bike events slightly decreasing since 2014") + 
  labs(x ='Year', y = 'Total amount')
#Donars by year
ggplot(Donors_by_year, aes(x = Donors_by_year$year, y = Donors_by_year$x))+
  geom_bar(stat = 'identity', fill = "blue")+ggtitle("Self donors gradually decreasing since 2014 ") + 
  labs(x ='Year', y = 'Total amount')

#Donars by year
ggplot(Active_registrations, aes(x = Active_registrations$year, y = Active_registrations$x)) +
  geom_bar(stat = 'identity', fill = "blue")+ggtitle("Active registrations have fallen since 2013 ") + 
  labs(x ='Year', y = 'No of registrations')

Participants EDA

# some basic data viz
barplot(table(participants$`Participant Occupation`), ylab = "Count", main = "Occupations of our Participants",
        ylim = c(0,2500), las = 2, col=rgb(0.2,0.4,0.6,0.6))

occ.count <- table(participants$`Participant Occupation`)
occ.count
occupation.viz <- ggplot(data = participants, aes(x = participants$`Participant Occupation`)) + 
  geom_bar(aes(y = (..count..), fill = `Participant Gender`)) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5))

occupation.viz + labs(x = "Occupations") + 
  labs(title = "Frequency of Participant Occupation") + 
  labs(y = "Count")
library(readr)
library(dplyr)
library(ggplot2)
library(scales)

donations2013 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2013.rds")
donations2014 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2014.rds")
donations2015 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2015.rds")
donations2016 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2016.rds")
donations2017 <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Donations/Donations2017.rds")

participants <- readRDS("C:/Users/Konrad/Desktop/ETM 527/RDS Data/Participants/Participants.rds")

#summary(donations2017$`Donor Gender`)
#levels(donations2017$`Donor Gender`) <- list(Male = "Male", Female = "Female", None = "")

Creating Data Aggregations

From donations data

# gen_2013 <- summary(donations2013$`Donor Gender`)
# gen_2014 <- summary(donations2014$`Donor Gender`)
# gen_2015 <- summary(donations2015$`Donor Gender`)
# gen_2016 <- summary(donations2016$`Donor Gender`)
# gen_2017 <- summary(donations2017$`Donor Gender`)
# 
# 
# gender_year <- tibble(c(2013, 2014, 2015, 2016, 2017), 
#                           c(gen_2013[1], gen_2014[1], gen_2015[1], gen_2016[1], gen_2017[1]), 
#                           c(gen_2013[2], gen_2014[2], gen_2015[2], gen_2016[2], gen_2017[2]), 
#                           c(gen_2013[3], gen_2014[3], gen_2015[3], gen_2016[3], gen_2017[3]),
#                           c(gen_2013[4], gen_2014[4], gen_2015[4], gen_2016[4], gen_2017[4]))
#                           
# colnames(gender_year) <- c("Year", "Female", "Male", "None", "NA")
# 
# 
# year_num <- tibble(2013:2017, c(nrow(donations2013), nrow(donations2014), nrow(donations2015), nrow(donations2016), nrow(donations2017)))
# colnames(year_num) <- c("Year", "Number of Participants")
# 
# 
# tot_gifts2013 <- sum(donations2013$`Gift Amount($)`, na.rm = TRUE)
# tot_gifts2014 <- sum(donations2014$`Gift Amount($)`, na.rm = TRUE)
# tot_gifts2015 <- sum(donations2015$`Gift Amount($)`, na.rm = TRUE)
# tot_gifts2016 <- sum(donations2016$`Gift Amount($)`, na.rm = TRUE)
# tot_gifts2017 <- sum(donations2017$`Gift Amount($)`, na.rm = TRUE)
# 
# med_gifts2013 <- median(donations2013$`Gift Amount($)`, na.rm = TRUE)
# med_gifts2014 <- median(donations2014$`Gift Amount($)`, na.rm = TRUE)
# med_gifts2015 <- median(donations2015$`Gift Amount($)`, na.rm = TRUE)
# med_gifts2016 <- median(donations2016$`Gift Amount($)`, na.rm = TRUE)
# med_gifts2017 <- median(donations2017$`Gift Amount($)`, na.rm = TRUE)
# 
# mean_gifts2013 <- mean(donations2013$`Gift Amount($)`, na.rm = TRUE)
# mean_gifts2014 <- mean(donations2014$`Gift Amount($)`, na.rm = TRUE)
# mean_gifts2015 <- mean(donations2015$`Gift Amount($)`, na.rm = TRUE)
# mean_gifts2016 <- mean(donations2016$`Gift Amount($)`, na.rm = TRUE)
# mean_gifts2017 <- mean(donations2017$`Gift Amount($)`, na.rm = TRUE)
# 
# 
# tot_donations <- tibble(2013:2017,
#                             c(tot_gifts2013, tot_gifts2014, tot_gifts2015, tot_gifts2016, tot_gifts2017),
#                             c(med_gifts2013, med_gifts2014, med_gifts2015, med_gifts2016, med_gifts2017), 
#                             c(mean_gifts2013, mean_gifts2014, mean_gifts2015, mean_gifts2016, mean_gifts2017))
# 
# colnames(tot_donations) <- c("Year", "Total Donations", "Median", "Mean")
# 
# add_tot_gifts2013 <- sum(donations2013$`Additional Gift Amount($)`, na.rm = TRUE)
# add_tot_gifts2014 <- sum(donations2014$`Additional Gift Amount($)`, na.rm = TRUE)
# add_tot_gifts2015 <- sum(donations2015$`Additional Gift Amount($)`, na.rm = TRUE)
# add_tot_gifts2016 <- sum(donations2016$`Additional Gift Amount($)`, na.rm = TRUE)
# add_tot_gifts2017 <- sum(donations2017$`Additional Gift Amount($)`, na.rm = TRUE)
# 
# add_med_gifts2013 <- median(donations2013$`Additional Gift Amount($)`, na.rm = TRUE)
# add_med_gifts2014 <- median(donations2014$`Additional Gift Amount($)`, na.rm = TRUE)
# add_med_gifts2015 <- median(donations2015$`Additional Gift Amount($)`, na.rm = TRUE)
# add_med_gifts2016 <- median(donations2016$`Additional Gift Amount($)`, na.rm = TRUE)
# add_med_gifts2017 <- median(donations2017$`Additional Gift Amount($)`, na.rm = TRUE)
# 
# add_mean_gifts2013 <- mean(donations2013$`Additional Gift Amount($)`, na.rm = TRUE)
# add_mean_gifts2014 <- mean(donations2014$`Additional Gift Amount($)`, na.rm = TRUE)
# add_mean_gifts2015 <- mean(donations2015$`Additional Gift Amount($)`, na.rm = TRUE)
# add_mean_gifts2016 <- mean(donations2016$`Additional Gift Amount($)`, na.rm = TRUE)
# add_mean_gifts2017 <- mean(donations2017$`Additional Gift Amount($)`, na.rm = TRUE)
# 
# 
# add_donations <- tibble(2013:2017,
#   c(add_tot_gifts2013, add_tot_gifts2014, add_tot_gifts2015, add_tot_gifts2016, add_tot_gifts2017), 
#   c(add_med_gifts2013, add_med_gifts2014, add_med_gifts2015, add_med_gifts2016, add_med_gifts2017), 
#   c(add_mean_gifts2013, add_mean_gifts2014, add_mean_gifts2015, add_mean_gifts2016, add_mean_gifts2017))
# 
# colnames(add_donations) <- c("Year", "Additional Donations", "Median", "Mean")
# 
# 
# write_rds(tot_donations, "C:/Users/Konrad/Desktop/ETM 527/Calculated/Gift Amounts.rds")
# write_rds(add_donations, "C:/Users/Konrad/Desktop/ETM 527/Calculated/Additional Amounts.rds")
# write_rds(gender_year, "C:/Users/Konrad/Desktop/ETM 527/Calculated/Yearly Gender Breakdown.rds")
# 
# gen_tot_2013_gifts <- aggregate(donations2013$`Gift Amount($)`, by = list(donations2013$`Donor Gender`), FUN = sum)
# gen_med_2013_gifts <- aggregate(donations2013$`Gift Amount($)`, by = list(donations2013$`Donor Gender`), FUN = median)  
# gen_mean_2013_gifts <- aggregate(donations2013$`Gift Amount($)`, by = list(donations2013$`Donor Gender`), FUN = mean)
# 
# gen_tot_2014_gifts <- aggregate(donations2014$`Gift Amount($)`, by = list(donations2014$`Donor Gender`), FUN = sum)
# gen_med_2014_gifts <- aggregate(donations2014$`Gift Amount($)`, by = list(donations2014$`Donor Gender`), FUN = median)  
# gen_mean_2014_gifts <- aggregate(donations2014$`Gift Amount($)`, by = list(donations2014$`Donor Gender`), FUN = mean)
# 
# gen_tot_2015_gifts <- aggregate(donations2015$`Gift Amount($)`, by = list(donations2015$`Donor Gender`), FUN = sum)
# gen_med_2015_gifts <- aggregate(donations2015$`Gift Amount($)`, by = list(donations2015$`Donor Gender`), FUN = median)  
# gen_mean_2015_gifts <- aggregate(donations2015$`Gift Amount($)`, by = list(donations2015$`Donor Gender`), FUN = mean)
# 
# gen_tot_2016_gifts <- aggregate(donations2016$`Gift Amount($)`, by = list(donations2016$`Donor Gender`), FUN = sum)
# gen_med_2016_gifts <- aggregate(donations2016$`Gift Amount($)`, by = list(donations2016$`Donor Gender`), FUN = median)  
# gen_mean_2016_gifts <- aggregate(donations2016$`Gift Amount($)`, by = list(donations2016$`Donor Gender`), FUN = mean)
# 
# gen_tot_2017_gifts <- aggregate(donations2017$`Gift Amount($)`, by = list(donations2017$`Donor Gender`), FUN = sum)
# gen_med_2017_gifts <- aggregate(donations2017$`Gift Amount($)`, by = list(donations2017$`Donor Gender`), FUN = median)  
# gen_mean_2017_gifts <- aggregate(donations2017$`Gift Amount($)`, by = list(donations2017$`Donor Gender`), FUN = mean)
# 
# gender_year_totals <- rbind(gen_tot_2013_gifts, gen_tot_2014_gifts, gen_tot_2015_gifts, gen_tot_2016_gifts, gen_tot_2017_gifts)
# 
# gender_year_med <- rbind(gen_med_2013_gifts, gen_med_2014_gifts, gen_med_2015_gifts, gen_med_2016_gifts, gen_med_2017_gifts)
# 
# gender_year_mean <- rbind(gen_mean_2013_gifts, gen_mean_2014_gifts, gen_mean_2015_gifts, gen_mean_2016_gifts, gen_mean_2017_gifts)
# 
# gender_totals <- tibble(rep(2013:2017, each = 3), 
#                         rep(c("Female", "Male", "None"), times = 5), 
#                         gender_year_totals$x, 
#                         gender_year_med$x, 
#                         gender_year_mean$x)
# 
# colnames(gender_totals) <- c("Year", "Gender", "Total Gifts", "Median", "Mean")
# 
# write_rds(gender_totals, "C:/Users/Konrad/Desktop/ETM 527/Calculated/Gender Year Totals Breakdown.rds")
tot_donations <- read_rds("C:/Users/Konrad/Desktop/ETM 527/Calculated/Gift Amounts.rds")
add_donations <- read_rds("C:/Users/Konrad/Desktop/ETM 527/Calculated/Additional Amounts.rds")
gender_year <- read_rds("C:/Users/Konrad/Desktop/ETM 527/Calculated/Yearly Gender Breakdown.rds")
gender_totals <- read_rds("C:/Users/Konrad/Desktop/ETM 527/Calculated/Gender Year Totals Breakdown.rds")
Total Donations
ggplot(tot_donations, aes(Year, `Total Donations`)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels = comma) + 
  ylab("Participants") + 
  ggtitle("The number of participants has fallen every year since 2014") + 
  theme(plot.title = element_text(hjust = 0.5)) +
  theme(plot.title = element_text(size = 18, face = "bold")) #+
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Participant numbers fallen.png")

ggplot(participants, aes(`Fiscal Year`)) + 
  geom_bar() + 
  scale_y_continuous(labels = comma) + 
  ylab("Participants") + 
  xlab("Fiscal Year") + 
  ggtitle("Number of participants has decreased every year") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  theme(plot.title = element_text(size =18, face = "bold")) #+
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Number of participants decreased every year.png", width = 10)

Sum of Donations

ggplot(tot_donations, aes(Year, `Total Donations`/1000000)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  ylab("Gift Amount ($M)") + 
  ggtitle("Total gift amounts have fallen every year since 2014") + 
  theme(plot.title = element_text(hjust = 0.5)) #+ 
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Gift amounts have fallen.png")

Mean Donations

ggplot(tot_donations, aes(Year, Mean)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  ylab("Gift Amount") + 
  ggtitle("Mean gift amount continues to rise") + 
  theme(plot.title = element_text(hjust = 0.5)) #+ 
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Gift amounts have fallen.png")

Median Donations

ggplot(tot_donations, aes(Year, Median)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  ylab("Gift Amount") + 
  ggtitle("Median gift amount remains unchanged") + 
  theme(plot.title = element_text(hjust = 0.5)) #+ 
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Gift amounts have fallen.png")
Gender Totals
ggplot(gender_totals[order(gender_totals$Gender),], aes(Year, `Total Gifts`/1000000, fill = Gender)) + 
  geom_bar(stat = "identity") + 
  scale_y_continuous(labels=dollar_format(prefix="$", suffix = "M")) + 
  scale_fill_manual(values=c("#A92A2A", "#205A8F", "#B4BFC3")) +
  ylab("Gift Amount (M)") + 
  ggtitle("Total gift amount has decreased") + 
  theme(plot.title = element_text(hjust = 0.5)) +
  theme(plot.title = element_text(size =18, face = "bold")) #+
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Total gift amounts by gender.png", width = 12)

ggplot(gender_totals, aes(Year, Median, fill = Gender)) + 
  geom_bar(stat = "identity", position = "dodge") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) + 
  scale_fill_manual(values=c("#A92A2A", "#205A8F", "#B4BFC3")) +
  ylab("Gift Amount ($)") + 
  ggtitle("Median gift amount remains unchanged") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  theme(plot.title = element_text(size =18, face = "bold")) #+
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Median gift amounts by gender.png", width = 12)


ggplot(gender_totals, aes(Year, Mean, fill = Gender)) + 
  geom_bar(stat = "identity", position = "dodge") + 
  scale_y_continuous(labels=dollar_format(prefix="$")) +  
  scale_fill_manual(values = c("#A92A2A", "#205A8F", "#B4BFC3")) +
  ylab("Gift Amount ($)") + 
  ggtitle("Mean gift amount has fluctuated") + 
  theme(plot.title = element_text(hjust = 0.5)) + 
  theme(plot.title = element_text(size =18, face = "bold")) #+
  #ggsave("C:\\Users\\Konrad\\Desktop\\ETM 527\\Mean gift amounts by gender.png", width = 12)

library(dplyr)
library(magrittr)
library(tidyr)
library(knitr)
library(tibble)
library(readxl)
library(graphics)
library(ggplot2)
library(scales)
library(RColorBrewer)
nt <-
read_excel("C:/Users/eva/Documents/ETM 527/Data Challenge 2018/National Teams/2013-2017 National Team Activity.xlsx", skip = 1, na = c("NA", " ", "-999"),
           col_types = c("text", "text", "text", 
                         "text", "text", "text", "date", "text", 
                         "numeric", "numeric", "numeric", 
                         "numeric", "numeric", "text", "text", 
                         "text", "text", "text", "text", "text", 
                         "text", "numeric", "text", "text", 
                         "text", "text", "text"))

dim(nt)
#Removing the "Corporate Name" field as it was blank for all recornt
nt$'Corporate Name' <- NULL
str(nt)
nt$`Event Chapter` <- as.factor(nt$`Event Chapter`)
nt$`Event Category` <- as.factor(nt$`Event Category`)
nt$`Event Type` <- as.factor(nt$`Event Type`)
nt$`Local Team Name` <- as.factor(nt$`Local Team Name`)
nt$`Event Name` <- as.factor(nt$`Event Name`)
nt$Location <- as.factor(nt$Location)

cols_to_factor <- 12:ncol(nt)

nt[, cols_to_factor] <- lapply(nt[, cols_to_factor], as.factor) 
# Fill down team names
for (i in 2:nrow(nt))
{
  if (is.na(nt$`National Team Name`[i]) & !is.na(nt$`National Team Name`[i-1]))
  {
    nt$`National Team Name`[i] <- nt$`National Team Name`[i-1]
  }
}
View(nt)
# add NA in the Team Name where applicable
nt$`National Team Name` <- as.factor(nt$`National Team Name`)
summary(nt$`National Team Name`)

nt$`National Team Name`[nt$`National Team Name` == "N/A"] <- NA  #selects all matching rows and changes to NA
summary(nt$`National Team Name`)



Not.National.Team = subset(nt, is.na(nt$`National Team Name`), select =`National Team Name`:`Primary Connection To MS`)
Not.National.Team = Not.National.Team[,c(5,6,2,3,4,7:26)]

nt <- nt[which(!is.na(nt$`National Team Name`)),]
nt <- nt[which(!is.na(nt$`Local Team Name`)),]
NameLocation <- nt$Location
summary(NameLocation)
BlankLocation <- nt[which(is.na(nt$Location)), ]
View(BlankLocation)



View(nt)

sink("C:/Users/eva/Documents/ETM 527/Data Challenge 2018/National Teams/National Teams Basic Exploration.txt")
class(nt)
dim(nt)
glimpse(nt)
head(nt)
tail(nt)
summary(nt)
str(nt)
sink()
library(dplyr)
teams.count = count(nt,team =nt$`National Team Name`)
teams.count$team = factor(teams.count$team, levels = teams.count$team[order(teams.count$n)])
filter.top.count = filter(teams.count,n>15)
ggplot(filter.top.count, aes(team,n)) + 
  geom_bar(stat = "identity", aes(`team`, fill = `team`)) + coord_flip()+theme(axis.text=element_text(size=7),
        axis.title=element_text(size=14,face="bold"))+
  ylab("Count") + 
  xlab("National Team") + 
  ggtitle("2013 NMSS National Team Participation")+
  scale_size_continuous()
ggsave("C:/Users/eva/Documents/ETM 527/Data Challenge 2018/National Teams/National Team Participation.png")
Teams.Revenue = nt[c(1, 9)]
Teams.Revenue = aggregate(Teams.Revenue$`Revenue Raised`, by=list(`National Team Name`=Teams.Revenue$`National Team Name`), FUN=sum)
names(Teams.Revenue) = c("National Team Name", "Total Revenue Raised")
Teams.Revenue$`National Team Name` = factor(Teams.Revenue$`National Team Name`, levels = Teams.Revenue$`National Team Name`[order(Teams.Revenue$`Total Revenue Raised`)])
filter.top.revenue = filter(Teams.Revenue,`Total Revenue Raised`>100000)
ggplot(filter.top.revenue, aes(`National Team Name`, `Total Revenue Raised`/10000))+ 
  geom_bar(stat = "identity", aes(`National Team Name`, fill = `National Team Name`)) +
  scale_y_continuous(labels=dollar_format(prefix="$"))+
  ylab("Total Revenue Raised (in 10 thousands)") + 
  xlab("National Team Name") +   coord_flip()+ 
  ggtitle("2013 NMSS Top Fundraising National Teams")+ scale_fill_discrete(breaks = rev(levels(filter.top.revenue$`National Team Name`)))
scale_size_continuous()
ggsave("C:/Users/eva/Documents/ETM 527/Data Challenge 2018/National Teams/Visuals/Top Funraising National Team.png")
Connection = count(Not.National.Team, pcms=Not.National.Team$`Primary Connection To MS`)
Connection2 = count(nt, pcms=nt$`Primary Connection To MS`)

Connection$pcms = factor(Connection$pcms, levels = Connection$pcms[order(Connection$n)])
Connection2$pcms = factor(Connection2$pcms, levels = Connection2$pcms[order(Connection2$n)])

connect <- cbind(Connection,Connection2)
connect <- cbind(Connection, Connection2[,2])

Connect <- rowSums(connect[2:3]) 
connect <- cbind(connect,Connect)

connect <- connect[,c(1,4)]
connect$Connect <- as.integer(connect$Connect)
connect$pcms = factor(connect$pcms, levels = connect$pcms[order(connect$Connect)])
connect <- arrange(connect, desc(Connect))

names(connect) = c("Primary Connection to MS", "Number of Participants")
ggplot(connect, aes(`Primary Connection to MS`, `Number of Participants`))+
   geom_bar(stat =  "identity", aes(`Primary Connection to MS`, fill = `Primary Connection to MS`))+
   xlab("Primary Connection To MS") +
   ylab("Number of Team Members") + coord_flip() + theme(axis.text=element_text(size=7),
        axis.title=element_text(size=14,face="bold"))+
   ggtitle("2013 NMSS Primary Connection to MS National & Not National Teams")+
   scale_size_continuous()+ scale_y_continuous()
ggsave("C:/Users/eva/Documents/ETM 527/Data Challenge 2018/National Teams/Visuals/Primary Connection to MS.png")

# SaveRDS
saveRDS(nt,"National_Teams_cleaned")
saveRDS(Not.National.Team,"Not_Nationa_Team_from_NT")

Business question : What is the common denominator for our top performing corporate teams?

#(Is it industry, culture, executive involvement, connection to MS, other?)

library(tidyverse)
library(ggpubr)
library(ggplot2)
library(magrittr)

just want corporate teams

corp <- teams %>%
  select(everything()) %>%
  filter(`Team Division` == "Corporate")

clean up

corp$`Fiscal Year` <- as.factor(corp$`Fiscal Year`)
corp$`Team Goal($)` <- as.numeric(corp$`Team Goal($)`)
corp$`Number of Participants` <- as.numeric(corp$`Number of Participants`)
corp$Company[corp$Company == "Team BP"] <- "BP"

try some correlations

corp.goal.part <- cor(corp$`Team Goal($)`, corp$`Number of Participants`, method = "pearson", use = "complete.obs")
summary(corp.goal.part)

plot(x, y, main = "Correlation : Team Goal Increase with More Team Members",
     xlab = "Number of Participants", ylab = "Total Team Gift",
     pch = 19, frame = FALSE)
abline(lm(y ~ x, data = corp), col = "blue")

number of participats

corp.event <- corp %>%
  select(`Internal Event Name`, `Fiscal Year`, `Number of Participants`, Company) %>%
  group_by(`Fiscal Year`, Company) %>%
  filter(!is.na(Company))

corp.event.participants <- corp.event %>%
  select(`Fiscal Year`, `Number of Participants`, Company) %>%
  group_by(`Fiscal Year`, Company) %>%
  summarise(sum(`Number of Participants`))

colnames(corp.event.participants)[3] <- "N"

year.participants <- corp.event.participants %>%
  select(`Fiscal Year`, `N`) %>%
  group_by(`Fiscal Year`) %>%
  summarise(sum(N))

top 10 corps

top.10.corp <- corp %>%
  select(everything()) %>%
  group_by(Company) %>%
  filter(!is.na(Company)) %>%
  summarise(sum(`Total Confirmed Gifts in Team History($)`)) %>%
  top_n(10)

dataframe of vars for top corps

top.corps <- top.10.corp$Company

top.corps.common <- corp %>%
  select(everything()) %>%
  filter(Company %in% top.corps)

trying to time series

corp$`Event Date` <- as.Date(corp$`Event Date`, "%m/%d/%Y")
top.corps.common$`Date` <- as.Date(top.corps.common$`Event Date`, "%m/%d/%Y")
top.corps.common$DateYear <- lubridate::year(top.corps.common$Date)

corp.gift.ts <- ts(corp$`Team Total Confirmed ($)`, frequency = , start = 2013)

tsData <- top.corps.common[,28]
decomposeRes <- decompose(tsData, type = "additive")

ggplot number of participants for top corp teams

corp.event.viz <- ggplot(top.corps.common, aes(x = `Date`, y = `Number of Participants`, fill = Company)) +
  geom_area()
corp.event.viz

plotly avg number of participants for top corporate teams

avg.participants.top.corps <- top.corps.common %>%
  select(Company, `Number of Participants`) %>%
  group_by(Company) %>%
  summarise(avg = mean(`Number of Participants`))

density <- density(avg.participants.top.corps$`avg`)

overall.avg.number.participants <- plotly::plot_ly(x = ~density$x, y = ~density$y, type = 'scatter', mode = 'lines', fill = 'tozeroy') %>%
  layout(xaxis = list(title = 'Number of Participants'),
         yaxis = list(title = 'Density'))
overall.avg.number.participants

area for each company

top.corps.participants <- top.corps.common %>%
  select(Company, `Event ID`, `Number of Participants`) %>%
  filter(Company %in% top.corps) %>%
  group_by(Company,`Event ID`) %>%
  summarise(sum = sum(`Number of Participants`))

Company %in% top.corps

team1 <- top.corps.common[which(top.corps.participants$Company == "BP"),]
density1 <- density(team1$`Number of Participants`)

team2 <- top.corps.common[which(top.corps.participants$Company == "Calpine Corporation"),]
density2 <- density(team2$`Number of Participants`)

team3 <- top.corps.common[which(top.corps.participants$Company == "CGG"),]
density3 <- density(team3$`Number of Participants`)

team4 <- top.corps.common[which(top.corps.participants$Company == "ConocoPhillips"),]
density4 <- density(team4$`Number of Participants`)

team5 <- top.corps.common[which(top.corps.participants$Company == "ExxonMobil Cycling Team"),]
density5 <- density(team5$`Number of Participants`)

team6 <- top.corps.common[which(top.corps.participants$Company == "Noble Drilling Services Inc."),]
density6 <- density(team6$`Number of Participants`)

team7 <- top.corps.common[which(top.corps.participants$Company == "Saint Arnold Brewing Company"),]
density7 <- density(team7$`Number of Participants`)

team8 <- top.corps.common[which(top.corps.participants$Company == "Salesforce Bike MS"),]
density8 <- density(team8$`Number of Participants`)

team9 <- top.corps.common[which(top.corps.participants$Company == "Team Shell"),]
density9 <- density(team9$`Number of Participants`)

team10 <- top.corps.common[which(top.corps.participants$Company == "The Houstonian Club, Hotel and Spa"),]
density10 <- density(team10$`Number of Participants`)

top.corps.participants.viz <- plot_ly(x = ~density1$x, y = ~density1$y, type = 'scatter', mode = 'lines', name = 'BP', fill = 'tozeroy') %>%
  add_trace(x = ~density2$x, y = ~density2$y, name = 'Calpine Corporation', fill = 'tozeroy') %>%
  add_trace(x = ~density3$x, y = ~density3$y, name = 'CGG', fill = 'tozeroy') %>%
  add_trace(x = ~density4$x, y = ~density4$y, name = 'ConocoPhillips', fill = 'tozeroy') %>%
  add_trace(x = ~density5$x, y = ~density5$y, name = 'ExxonMobil Cycling Team', fill = 'tozeroy') %>%
  add_trace(x = ~density6$x, y = ~density6$y, name = 'Noble Drilling Services Inc.', fill = 'tozeroy') %>%
  add_trace(x = ~density7$x, y = ~density7$y, name = 'Saint Arnold Brewing Company', fill = 'tozeroy') %>%
  add_trace(x = ~density8$x, y = ~density8$y, name = 'Salesforce Bike MS', fill = 'tozeroy') %>%
  add_trace(x = ~density9$x, y = ~density9$y, name = 'Team Shell', fill = 'tozeroy') %>%
  add_trace(x = ~density10$x, y = ~density10$y, name = 'The Houstonian Club, Hotel and Spa', fill = 'tozeroy') %>%
  layout(xaxis = list(title = 'Number of Participants per Event'),
         yaxis = list(title = 'Density'),
         main)
top.corps.participants.viz

stream plots

corp.density.link = api_create(top.corps.participants.viz, filename="Participant Density for Top Corporate Teams")
corp.density.link
east.health.viz <- ggplot(east.health, aes(x = reorder(`Participant State`, -Count), 
                                           y = `Count`,
                                           fill = `Participant State`)) + 
  geom_bar(stat = "identity")
east.health.viz +
  labs(x = "Number of Participants",
       y = "State",
       title = "Number of Cyclists Working in Healthcare Within the Target Region")

mean donation for each event

gender.gifts <- gender.vip %>%
  select(`Participant Gender`, `Event Date`, `Total From Participant($)`) %>%
  group_by(`Participant Gender`, `Event Date`)
gender.gifts$`Event Date` <- as.Date(gender.gifts$`Event Date`)
gender.gifts <- aggregate(gender.vip, by = list(gender.vip$`Participant Gender`, gender.vip$`Event Date`), FUN = mean)
gender.gifts <-gender.gifts[,c(1,2,9)]
colnames(gender.gifts) <- c("Gender", "Event Date", "Gift Amount")
gender.gifts

gender.gifts$`Event Date` <- as.Date(gender.gifts$`Event Date`)
gender.gif <- aggregate(gender.gifts, by = list(gender.gifts$`Gender`, gender.gifts$`Event Date`), FUN = mean)
gender.gif <-gender.gif[,c(1,2,5)]
colnames(gender.gif) <- c("Gender", "Event Date", "Gift Amount")

mean donation for each fiscal year

gender.gifts.year <- aggregate(gender.vip, by = list(gender.vip$`Participant Gender`, gender.vip$`Fiscal Year`), FUN = mean)
gender.gifts.year <-gender.gifts.year[,c(1,2,9)]
colnames(gender.gifts.year) <- c("Gender", "Year", "Gift Amount")
gender.gifts.year
  
g.gift.year.viz <- ggplot(data = gender.gifts.year, 
                     aes(x = gender.gifts.year$Year, y = gender.gifts.year$`Gift Amount`, fill = gender.gifts.year$Gender)) +
  geom_bar(stat = "identity", position = "dodge")
g.gift.year.viz +
  labs(title = "Mean Participant Donation per Year by Gender") +
  labs(x = "Fiscal Year") +
  labs(y = "Gift Amount")
event.gifts <- aggregate(gender.vip, by = list(gender.vip$`Event Name`, gender.vip$`Fiscal Year`), FUN = mean)
event.gifts <- event.gifts[,c(1,3,9)]
as.data.frame(event.gifts)
colnames(event.gifts) <- c("Event", "Date", "Gift Amount")

event.gifts$Year <- format(event.gifts$Date, "%Y")
event.gifts$Month <- format(event.gifts$Date, "%b")
event.gifts$Day <- format(event.gifts$Date, "%d")
event.gifts$CommonDate <- as.Date(as.character(as.POSIXct(event.gifts$Date)))

event.viz <- ggplot(data = event.gifts, mapping = aes(x = CommonDate, y = `Gift Amount`, shape = Year, colour = Year)) +
    geom_point() +
    geom_line(aes(group = 1))
event.viz <- event.viz + 
  facet_wrap(~Year, ncol = 1, scales = "free_x") + theme_bw() + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
  scale_y_continuous() +
  scale_x_date(labels = date_format("%d-%b"), breaks = date_breaks("2 weeks"))
event.viz
participants.event <- as.data.frame(
  participants %>%
    select(`Member ID`, `Internal Event Name`) %>%
    group_by(`Internal Event Name`) %>%
    tally()
)
participants.event <- arrange(participants.event, desc(n))
participants.event

participants.annual <- as.data.frame(
  participants %>%
    select(`Member ID`, `Fiscal Year`) %>%
    group_by(`Fiscal Year`) %>%
    tally()
)
participants.annual
class(participants)
dim(participants)
glimpse(participants)
head(participants, n = 5)
tail(participants, n = 5)
summary(participants)
# acknowledge NA's 
map(participants, ~sum(is.na(.)))
participants.dt <- data.table(gender.vip)

setkey(participants.dt, `Participant Occupation`, `Total From Participant($)`)

participants.dt[,print(.SD), by = `Participant Occupation`]

#participants.dt <- participants.dt[,.[(-`Total From Participant($)`)],
#                                   by=list(`Participant Occupation`, `Total From #Participant($)`)]

total.occ.gift <- participants.dt[,.(Total.Gift=sum(`Total From Participant($)`)), by = `Participant Occupation`][order(-Total.Gift)]

occ.total <- ggplot(total.occ.gift, aes(x = `Participant Occupation`)) +
  geom_bar(stat = "identity", aes(y = Total.Gift))
occ.total

avg.occ.gift <- participants.dt[,(Avg.Gift=mean(`Total From Participant($)`)),by=.(`Participant Occupation`)][order(-V1)]

# std.dev for each participant grouped by occupation
setkey(participants.dt, `Participant Occupation`)
participants.dt["Retail Wholesale",(Sd.V3=sd(`Total From Participant($)`))]
participants.dt["Retail Wholesale",]

# employer
setkey(participants.dt, `Participant Employer`)
participants.dt[,.N, by = `Participant Employer`][order(-N)]
setorder(setDT(participants.dt), -`Participant Employer`)[, head(.SD, 10), keyby][,.N, by = `Participant Employer`]
employer <- ggplot(participants.dt, aes(x = `Participant Employer`)) +
  geom_bar()
employer

some basic data viz

barplot(table(participants$`Participant Occupation`), ylab = "Count", main = "Occupations of our Participants",
        ylim = c(0,2500), las = 2, col=rgb(0.2,0.4,0.6,0.6))
occ.count <- table(participants$`Participant Occupation`)
occ.count

occupation.omitNA <- data.table(occupation.omitNA)
setkey(occupation.omitNA, `Participant Occupation`, `Participant Gender`)
occupation.omitNA <- participants[!is.na(participants$`Participant Occupation`),]
occ.count.omit.na <- occupation.omitNA[,.N, by=.(`Participant Occupation`,`Participant Gender`)]
occ.count.omit.na <- occ.count.omit.na[!is.na(`Participant Gender`)][order(-`N`)]
setnames(occ.count.omit.na, old = "V1", new = "Occupation")

Occupation Demographic

top20.occupations.viz <- ggplot(data = occ.count.omit.na, aes(x = occupation.omitNA$`Participant Occupation`)) + 
  geom_bar(na.rm = TRUE, aes(y = (..count..), fill = `Participant Gender`)) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
top20.occupations.viz <- top20.occupations.viz + 
  labs(x = "Occupations") + 
  labs(title = "Frequency of Participant Occupation") + 
  labs(y = "Count")
top20.occupations.viz

Occupation Demographic

top20.occupations.viz <- ggplot(data = occ.count.omit.na, aes(x = reorder(`Participant Occupation`, -`N`), 
                                                              y = `N`, fill = `Participant Gender`)) + 
  geom_bar(stat = "identity") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
top20.occupations.viz <- top20.occupations.viz + 
  labs(x = "Occupations") + 
  labs(title = "Frequency of Participant Occupation") + 
  labs(y = "Count")
top20.occupations.viz

Prior Participant? Yes - No?

prior.par.bar <- barplot(table(participants$`Is Prior Participant`), ylab = "Count", main = "Count of Prior Participants",
        ylim = c(0,300000), las = 2, col=rgb(0.2,0.4,0.6,0.6))

Team division bar plot

team.division.bar <- barplot(table(participants$`Team Division`), ylab = "Count", main = "Team Division Demographic",
        ylim = c(0,30000), las = 2, col=rgb(0.2,0.4,0.6,0.6))
g.year.viz <- ggplot(data = gender.year, 
                     aes(x = Year, y = Count))+
  geom_bar(stat = "identity", position = "dodge")
g.year.viz +
  labs(title = "Annual Participant Count") +
  labs(x = "Event Year") +
  labs(y = "Count")

gt.count <- aggregate(gender.vip$`Participant Gender` ~ gender.vip$`Fiscal Year`, data = gender.vip, FUN = length)
colnames(gt.count) <- c("Year", "Count")
gt.count

prep for voronoi

topEvents18 <- read_csv("C:\\Users\\J-Blazer\\Documents\\ETM 527\\topEvents18.csv")
cities.proj <- mapproject(topEvents18$Lon, topEvents18$Lat, "albers", param=c(30,40))
par(mar=c(0,0,0,0))
plot(cities.proj, asp=1, type="n", bty="n", xlab="", ylab="", axes = FALSE)
points(cities.proj, pch=20, cex=0.1, col="red")
topEventsVorn <- deldir(cities.proj$x, cities.proj$y)
plot(topEventsVorn, wlines="tess", wpoints="none", number=FALSE, add=TRUE, lty=1)

Can we quantify the effect competing events are having in our top markets?

library(dplyr)
library(ggplot2)
Bike_events = readRDS("D:/527- Data Mining/TUN Data Challenge/Datasets/Bike_Events.rds")
# these are top markets in  terms of active registrations pulled from Bike events
markets = c("TX","PA","MN","NY","MA","NC","CO","OH","CA","KS","MO","WA","CA","IL","NJ")

#retrieving active registrations for top markets
All.events.registrations = Bike_events%>%
  select(Security.Category.Name,Fiscal.Year,State,Active.Registrations)%>%
  group_by(Security.Category.Name,Fiscal.Year,State)%>%
  summarise(sum(Active.Registrations))%>%
  filter(State %in% markets)
write.table(All.events.registrations,"Events.registrations.State.csv", sep = ",")
All.events.funds = Bike_events%>%
  select(Security.Category.Name,Fiscal.Year,Total.of.All.Confirmed.Gifts...,Total.Event.Gifts...,Total.From.Participant...,Total.Team.Gifts...,Total.Not.From.Participant...,City,State)%>%
  group_by(Security.Category.Name,Fiscal.Year,State)%>%
   filter(State %in% markets)
All.events.funds$TotalAmount = rowSums(All.events.funds[,3:7])
All.events.funds=All.events.funds%>%
  select(Security.Category.Name,Fiscal.Year,Total.of.All.Confirmed.Gifts...,Total.Event.Gifts...,Total.From.Participant...,Total.Team.Gifts...,Total.Not.From.Participant...,City,State,TotalAmount)%>%
  group_by(Security.Category.Name,Fiscal.Year,State)%>%
  summarise(sum(TotalAmount))
write.table(All.events.funds,"All.events.funds.csv", sep = ",")